Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Methyl-3-propyl-1*H*-pyrazole-5-carboxylic acid

Cunyan Zhang,^a* Hui Li,^b Dengke Liu^c and Mo Liu^c

^aSchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China, ^bDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China, and ^cTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China Correspondence e-mail: zhangcunyan1976@sina.com

Received 25 August 2007; accepted 25 August 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.157; data-to-parameter ratio = 13.9.

In the title compound, $C_8H_{12}N_2O_2$, an intermediate in the synthesis of sidenafil, the crystal packing is consolidated by $O-H\cdots N$ and $C-H\cdots O$ interactions.

Related literature

For synthesis, see: Bell et al. (1992).

Experimental

Crystal data

$C_8H_{12}N_2O_2$
$M_r = 168.20$
Monoclinic, P21/c
a = 4.9336 (19) Å

b = 19.121 (7) Å
c = 9.568 (4) Å
$\beta = 92.136 \ (7)^{\circ}$
V = 902.0 (6) Å ³

```
Z = 4
Mo K\alpha radiation
\mu = 0.09 \text{ mm}^{-1}
```

Data collection

Bruker SMART 1000 CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.948, \ T_{\max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.157$ S = 1.031585 reflections 114 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	H···A	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1 \cdots N2^{i} \\ C5 - H5A \cdots O2^{ii} \end{array}$	0.84 (3) 0.97	1.88 (3) 2.48	2.712 (3) 3.430 (4)	169 (3) 166
	1	1 (**) 1	. 1 . 1	

Symmetry codes: (i) x + 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ii) x - 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank Mr Haibin Song of Nankai University for the X-ray crystallographic determination and for helpful discussions and theory analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2523).

References

Bell, A. S., Brown, D. & Terrett, N. K. (1992). Eur. Patent 0 463 756.
Bruker (1997). SMART (Version 5.611), SAINT (Version 5.01) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

T = 294 (2) K

 $R_{\rm int} = 0.038$

refinement

 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

 $0.50 \times 0.20 \times 0.10 \text{ mm}$

4542 measured reflections 1585 independent reflections

1090 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

supplementary materials

Acta Cryst. (2007). E63, 04209 [doi:10.1107/S1600536807041827]

1-Methyl-3-propyl-1H-pyrazole-5-carboxylic acid

C. Zhang, H. Li, D. Liu and M. Liu

Comment

Sidenafil has been found to be particularly useful in the treatment of inter alia, male erectile dysfunction. The structure of the title compound, (I), (Fig. 1) a key intermediate in the synthesis of sidenafil, is reported here.

As shown in Fig. 2, the packing is consolidated by a conbination of O—H…N and C—H…O interactions (Table 1) resulting in molecular chains propagating in [20T].

Experimental

The title compound was prepared according to the method of Bell *et al.* (1992). 1-Methyl-3-propyl-1*H*-pyrazole-5-carboxylic acid ethyl ester (20.2 g, 0.10 mol) was suspended in 6 N aqueous sodium hydroxide solution (50 ml, 0.30 mol). The mixture was heated to 353 K for 2 h then diluted with water (50 ml) and acidified with concentrated hydrochloric acid (25 ml). Filtration gave the carboxylic acid as pale brown crystals (12.3 g, 71%), m.p. 423–427 K. Colourless blocks of (I) suitable for X-ray analysis were obtained by slow evaporation of a methanol/ethyl acetate mixture (1:1 ν/ν).

Refinement

The O-bound H atom was located in a difference map Its position was freely refined, with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The crystal packing for (I), with O—H…N and C—H…O interactions shown as dashed lines.

1-Methyl-3-propyl-1*H*-pyrazole-5-carboxylic acid

Crystal data

C₈H₁₂N₂O₂ $M_r = 168.20$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 4.9336 (19) Å b = 19.121 (7) Å c = 9.568 (4) Å $\beta = 92.136$ (7)° V = 902.0 (6) Å³ Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer	1585 independent reflections
Radiation source: fine-focus sealed tube	1090 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -5 \rightarrow 5$
$T_{\min} = 0.948, \ T_{\max} = 0.991$	$k = -11 \rightarrow 22$
4542 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difmap and geom
$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.157$	$w = 1/[\sigma^2(F_o^2) + (0.0772P)^2 + 0.3462P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.004$
1585 reflections	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
114 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $F_{000} = 360$ $D_x = 1.239 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1522 reflections $\theta = 2.4-26.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 294 (2) K Block, colourless $0.50 \times 0.20 \times 0.10 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.7756 (3)	0.22535 (10)	-0.19643 (18)	0.0556 (6)
H1	0.887 (7)	0.2471 (16)	-0.245 (3)	0.083*
02	0.6976 (4)	0.33056 (10)	-0.1072 (2)	0.0638 (6)
N1	0.2945 (4)	0.26597 (10)	0.06131 (19)	0.0405 (5)
N2	0.1416 (4)	0.21980 (10)	0.1296 (2)	0.0448 (5)
C1	0.6546 (5)	0.26908 (13)	-0.1126 (2)	0.0434 (6)
C2	0.4590 (4)	0.23211 (12)	-0.0261 (2)	0.0394 (6)
C3	0.4085 (5)	0.16227 (12)	-0.0133 (2)	0.0458 (6)
Н3	0.4905	0.1260	-0.0607	0.055*
C4	0.2087 (5)	0.15646 (12)	0.0855 (2)	0.0452 (6)
C5	0.0766 (5)	0.09284 (13)	0.1413 (3)	0.0594 (8)
H5A	-0.0493	0.1070	0.2115	0.071*
H5B	-0.0278	0.0706	0.0658	0.071*
C6	0.2655 (7)	0.04127 (16)	0.2037 (4)	0.0884 (11)
H6A	0.3816	0.0643	0.2737	0.106*
H6B	0.3800	0.0234	0.1317	0.106*
C7	0.1225 (9)	-0.01936 (19)	0.2712 (5)	0.1121 (15)
H7A	0.0049	-0.0019	0.3409	0.168*
H7B	0.2545	-0.0502	0.3143	0.168*
H7C	0.0173	-0.0444	0.2012	0.168*
C8	0.2658 (5)	0.33973 (12)	0.0891 (3)	0.0549 (7)
H8A	0.4412	0.3597	0.1098	0.082*
H8B	0.1528	0.3462	0.1677	0.082*
H8C	0.1842	0.3624	0.0085	0.082*

Atomic displacement parameters (A^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0502 (11)	0.0624 (12)	0.0563 (11)	-0.0052 (8)	0.0315 (9)	-0.0021 (9)
O2	0.0663 (13)	0.0528 (12)	0.0744 (13)	-0.0101 (9)	0.0330 (10)	0.0005 (9)
N1	0.0359 (10)	0.0442 (11)	0.0423 (11)	0.0006 (8)	0.0138 (9)	-0.0002 (8)
N2	0.0406 (11)	0.0489 (12)	0.0462 (12)	-0.0010 (9)	0.0193 (9)	0.0035 (9)

supplementary materials

C1	0.0354 (13)	0.0546 (16)	0.0409 (13)		0.0004 (11)	0.0102 (10)	0.0029 (11)
C2	0.0328 (12)	0.0492 (14)	0.0370 (12)		0.0008 (10)	0.0124 (10)	-0.0005 (10)
C3	0.0421 (14)	0.0479 (15)	0.0485 (14)		0.0058 (10)	0.0176 (11)	-0.0010 (11)
C4	0.0403 (13)	0.0466 (14)	0.0498 (15)		0.0019 (10)	0.0158 (11)	0.0032 (11)
C5	0.0573 (17)	0.0537 (16)	0.0690 (18)		-0.0030 (12)	0.0266 (14)	0.0048 (13)
C6	0.081 (2)	0.063 (2)	0.122 (3)		-0.0029 (17)	0.015 (2)	0.0266 (19)
C7	0.121 (3)	0.070 (2)	0.147 (4)		-0.003 (2)	0.024 (3)	0.045 (2)
C8	0.0584 (17)	0.0454 (15)	0.0622 (17)		-0.0001 (12)	0.0198 (13)	-0.0057 (12)
Geometric paran	neters (Å, °)						
01—C1		1.317 (3)	C5	5—C6		1.4	68 (4)
01—H1		0.84 (3)	C5	5—H5A		0.9	9700
O2—C1		1.195 (3)	C5	5—Н5В		0.9	0700
N1—N2		1.346 (2)	C6	6—C7		1.5	514 (4)
N1—C2		1.352 (3)	C6	б—Н6А	L	0.9	0700
N1—C8		1.443 (3)	C6	б—Н6В	1	0.9	9700
N2—C4		1.328 (3)	C7-	/—H7A	L	0.9	0600
C1—C2		1.475 (3)	C7-	7—H7B	1	0.9	9600
С2—С3		1.365 (3)	C7-	7 —Н7С	, ,	0.9	0600
C3—C4		1.396 (3)	C8	3—H8A	L	0.9	0600
С3—Н3		0.9300	C8	3—H8B	1	0.9	0600
C4—C5		1.488 (3)	C8	3—Н8С	l ,	0.9	0600
C1—O1—H1		110 (2)	C4	I	-H5B	10	8.6
N2—N1—C2		110.26 (19)	Н5	5A—C5	—Н5В	10	7.6
N2—N1—C8		119.39 (17)	C5	5—C6—	-C7	112	2.9 (3)
C2—N1—C8		130.34 (19)	C5	5—C6—	-H6A	10	9.0
C4—N2—N1		107.06 (17)	C7-	/—C6—	-H6A	10	9.0
O2-C1-O1		124.6 (2)	C5	5—С6—	-H6B	10	9.0
O2—C1—C2		124.5 (2)	C7-	и—С6—	-H6B	10	9.0
O1—C1—C2		111.0 (2)	H6	6A—C6	—Н6В	10	7.8
N1-C2-C3		107.28 (18)	C6	б—С7—	-H7A	10	9.5
N1-C2-C1		122.6 (2)	C6	б—С7—	-H7B	10	9.5
C3—C2—C1		130.2 (2)	H7	7A—C7	′—Н7В	10	9.5
C2—C3—C4		105.9 (2)	C6	б—С7—	-H7C	10	9.5
С2—С3—Н3		127.0	H7	7A—C7	И—Н7С	10	9.5
С4—С3—Н3		127.0	H7	7В—С7	—H7C	10	9.5
N2-C4-C3		109.5 (2)	N1	l—C8–	-H8A	10	9.5
N2-C4-C5		120.9 (2)	N1	l—C8–	-H8B	10	9.5
C3—C4—C5		129.6 (2)	H8	3A—C8	H8B	10	9.5
C6—C5—C4		114.5 (2)	N1	l—C8–	-H8C	10	9.5
С6—С5—Н5А		108.6	H8	3A—C8	H8C	10	9.5
С4—С5—Н5А		108.6	H8	3B—C8	—H8C	10	9.5
C6—C5—H5B		108.6					
C2—N1—N2—C4	4	0.0 (2)	N1	I—C2—	-C3-C4	-0	.2 (3)
C8—N1—N2—C4	4	-179.6 (2)	C1	C2	-C3C4	17	8.4 (2)
N2—N1—C2—C3	3	0.2 (2)	N1	l—N2-	C4C3	-0	.1 (3)
C8—N1—C2—C3	3	179.7 (2)	N1	I—N2-	C4C5	17	9.8 (2)
N2—N1—C2—C	1	-178.6 (2)	C2-	2—C3—	-C4—N2	0.2	2 (3)

C8—N1—C2—C1	1.0 (4)	C2—C3—C4—C5		-179.6 (3)
02—C1—C2—N1	4.9 (4)	N2—C4—C5—C6		-123.6 (3)
01-C1-C2-N1	-175.1 (2)	C3—C4—C5—C6	:	56.3 (4)
O2—C1—C2—C3	-173.5 (3)	C4—C5—C6—C7		174.6 (3)
O1—C1—C2—C3	6.4 (3)			
Hydrogen-bond geometry (Å,	, °)			
D—H··· A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H··· A
O1—H1···N2 ⁱ	0.84 (3)	1.88 (3)	2.712 (3)	169 (3)
C5—H5A···O2 ⁱⁱ	0.97	2.48	3.430 (4)	166

C5—H5A…O2ⁱⁱ 0.97 Symmetry codes: (i) *x*+1, -*y*+1/2, *z*-1/2; (ii) *x*-1, -*y*+1/2, *z*+1/2.

Fig. 2